Measuring Coupling of Rhythmical Time Series Using Cross Sample Entropy and Cross Recurrence Quantification Analysis
نویسندگان
چکیده
The aim of this investigation was to compare and contrast the use of cross sample entropy (xSE) and cross recurrence quantification analysis (cRQA) measures for the assessment of coupling of rhythmical patterns. Measures were assessed using simulated signals with regular, chaotic, and random fluctuations in frequency, amplitude, and a combination of both. Biological data were studied as models of normal and abnormal locomotor-respiratory coupling. Nine signal types were generated for seven frequency ratios. Fifteen patients with COPD (abnormal coupling) and twenty-one healthy controls (normal coupling) walked on a treadmill at three speeds while breathing and walking were recorded. xSE and the cRQA measures of percent determinism, maximum line, mean line, and entropy were quantified for both the simulated and experimental data. In the simulated data, xSE, percent determinism, and entropy were influenced by the frequency manipulation. The 1 : 1 frequency ratio was different than other frequency ratios for almost all measures and/or manipulations. The patients with COPD used a 2 : 3 ratio more often and xSE, percent determinism, maximum line, mean line, and cRQA entropy were able to discriminate between the groups. Analysis of the effects of walking speed indicated that all measures were able to discriminate between speeds.
منابع مشابه
Dynamic characterization and predictability analysis of wind speed and wind power time series in Spain wind farm
The renewable energy resources such as wind power have recently attracted more researchers’ attention. It is mainly due to the aggressive energy consumption, high pollution and cost of fossil fuels. In this era, the future fluctuations of these time series should be predicted to increase the reliability of the power network. In this paper, the dynamic characteristics and short-term predictabili...
متن کاملMeasuring Electromechanical Coupling in Patients with Coronary Artery Disease and Healthy Subjects
Coronary artery disease (CAD) is the most common cause of death globally. To detect CAD noninvasively at an early stage before clinical symptoms occur is still nowadays challenging. Analysis of the variation of heartbeat interval (RRI) opens a new avenue for evaluating the functional change of cardiovascular system which is accepted to occur at the subclinical stage of CAD. In addition, systoli...
متن کاملCross-recurrence quantification analysis of categorical and continuous time series: an R package
This paper describes the R package crqa to perform cross-recurrence quantification analysis of two time series of either a categorical or continuous nature. Streams of behavioral information, from eye movements to linguistic elements, unfold over time. When two people interact, such as in conversation, they often adapt to each other, leading these behavioral levels to exhibit recurrent states. ...
متن کاملOnline Detection of Hydrodynamic Changes in Fluidized Bed using Cross Average Diagonal Line
Online detection of hydrodynamics of gas-solid fluidized bed was characterized using pressure fluctuations by cross recurrence plot (CRP) and cross recurrence quantification analysis (CRQA). Experiments were conducted in a lab scale fluidized bed of various particle sizes 150 μm, 280 μm and 490 μm at different gas velocities. Firstly, pattern changes of cross recurrence plot were discussed and ...
متن کاملOFFPRINT Detection of time-delayed interactions in biosignals using symbolic coupling traces
Directional coupling analysis of bivariate time series is an important subject of current research. In this letter, a method based on symbolic dynamics for the detection of time-delayed coupling is presented. The symbolic coupling traces, defined as the symmetric and diametric traces of the bivariate word distribution, allow for the quantification of coupling and are compared with established m...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 2017 شماره
صفحات -
تاریخ انتشار 2017